Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 5583, 2022 04 04.
Article in English | MEDLINE | ID: covidwho-1773994

ABSTRACT

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to COVID-19-ARDS. This secondary tissue injury arises from dysregulated neutrophils and neutrophil extracellular traps (NETs) intended to kill pathogens, but instead cause cell-injury. Insufficiency of pleiotropic therapeutic approaches delineate the need for inhibitors of dysregulated neutrophil-subset(s) that induce subset-specific apoptosis critical for neutrophil function-shutdown. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/VEGF-signal peptide receptor, DEspR, are apoptosis-resistant like DEspR+ cancer-cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID-19-ARDS. Here, we report the significant association of increased peripheral DEspR+CD11b+ neutrophil-counts with severity and mortality in ARDS and COVID-19-ARDS, and intravascular NET-formation, in contrast to DEspR[-] neutrophils. We detect DEspR+ neutrophils and monocytes in lung tissue patients in ARDS and COVID-19-ARDS, and increased neutrophil RNA-levels of DEspR ligands and modulators in COVID-19-ARDS scRNA-seq data-files. Unlike DEspR[-] neutrophils, DEspR+CD11b+ neutrophils exhibit delayed apoptosis, which is blocked by humanized anti-DEspR-IgG4S228P antibody, hu6g8, in ex vivo assays. Ex vivo live-cell imaging of Rhesus-derived DEspR+CD11b+ neutrophils showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data identify DEspR+CD11b+ neutrophils as a targetable 'rogue' neutrophil-subset associated with severity and mortality in ARDS and COVID-19-ARDS.


Subject(s)
COVID-19 , Extracellular Traps , Respiratory Distress Syndrome , Humans , Immunophenotyping , Neutrophils
2.
Ann Intern Med ; 174(12): 1727-1732, 2021 12.
Article in English | MEDLINE | ID: covidwho-1497806

ABSTRACT

Biorepositories provide a critical resource for gaining knowledge of emerging infectious diseases and offer a mechanism to rapidly respond to outbreaks; the emergence of the novel coronavirus, SARS-CoV-2, has proved their importance. During the COVID-19 pandemic, the absence of centralized, national biorepository efforts meant that the onus fell on individual institutions to establish sample repositories. As a safety-net hospital, Boston Medical Center (BMC) recognized the importance of creating a COVID-19 biorepository to both support critical science at BMC and ensure representation in research for its urban patient population, most of whom are from underserved communities. This article offers a realistic overview of the authors' experience in establishing this biorepository at the onset of the COVID-19 pandemic during the height of the first surge of cases in Boston, Massachusetts, with the hope that the challenges and solutions described are useful to other institutions. Going forward, funders, policymakers, and infectious disease and public health communities must support biorepository implementation as an essential element of future pandemic preparedness.


Subject(s)
Academic Medical Centers/organization & administration , COVID-19/prevention & control , Infection Control/methods , Pandemics , Specimen Handling , Boston , Humans , SARS-CoV-2 , Safety-net Providers , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL